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PREFACE

This report summarizes work done between 15 September 1977 and
15 January 1978 . Joseph A. Martone , Capt , USA? , BSC , was the project
engineer and principal investigator . The work is an application of
exper imental results published previously in CEEDO-TR-77-48. Support
was provided by the Environics Directorate, Detachment 1 (CEEDO ) ADTC ,
Tyndall AFB, Florida.

This report has been reviewed by the Information Office (01) and is
releasable to the National Technical Information Service (NTIS) . At NTIS
it will be available to the general public , including foreign nations.

This techmical report has been reviewed and is approved for publi-
cation.
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SECTION I

INTRODUCTION

The Environmental Protection Agency (EPA ) has promulgated emission
standards and measurement procedures for smoke produced by aircraft
turbine engines~

’. Smoke, by EPA definition
1, is particulate matter in

engine exhaust that obscures transmission of light. The EPA test methods
are largely adoptations of the Aerospace Recommended Practice, AR? 1179,
developed by the Society of Automotive Engineers (SAE ) Committee on
Aircraft Exhaust Emissions Measurement (E-3l) 2 The procedure involves
passing a known mass of engine exhaust gas through a filter and measuring
the optical reflectivity of the collected particles. Dividing this

result by the clean filter reflectance yields a dimensionless term used

for quantifying aircraft engine smoke emissions called smoke number (SN)

according to the following equation :

SN = 100 Ii — (R /R )~1 (1)
I S W J

R5 
= sample reflectance

R = clean filter reflectancew

AR? 1179 specifies a sample flow rate of 286 cm 3/s using a single
element sampling probe with an inlet diameter ( D )  of 2.0 mm. This
means that a typical smoke probe located at the exit nozzle of an air-
craft engine operates at about 20 to 33 percent of the isokinetic
sampling velocity3. Using this information and the findings of Martone
et a14 , it is possible to estimate subisokinetic sampling errors asso—
ciated with smoke probe operation. It should be noted that the EPA
procedure’ permits multipoint manifolded sampling probes with no speci-
fication for their physical dimensions, thus the entrance velocity at

1

L ~~~~~~~ - - ~~~~~~~~~~~~~~~~~ 
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each orifice could be appreciably different f rom the velocity at the
inlet of a single element smoke probe .

2

L — —— -
~~

-
~ - ~~ ~~~~~. ~~~~~~ -  - - —- - -

~~~-~~~~~~~ — 



_ _ _ _ _  

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I

- 
SECTION II

BACKGROUND

The study conducted by Martone et al4 used small bore aspirated
probes to obtain samples of submicrometer particles suspended in un-

heated near sonic and supersonic free jets. Subisokinetic sampling

errors were determined for free jet velocities of Mach 0.6 , 0.8 , 1.26 ,
and 1.47 . For particle-nozzle Stokes numbers (K) between 0.10 and 0.14
it was concluded that the ratio of the sampled aerosol concentration to
true free stream aerosol concentration (C/C ) is given by:

C/C0 = 0.69 + 0 . 3] .  (v / u ) + 12% (2)

where :

K = Stokes number of the particle-nozzle system = p d ‘U C /l8p Dp p  O s  gp .

particle density .

d = particle diameter .p

IJ g gas viscosity.

C5 = Cunningham slip-flow correction.

U0 = ambient flow velocity along the flow line passing through the
axis of the probe; for supersonic flows it is the subsonic velocity
which exists immediately downstream of a probe bow shock .

U = mean flow velocity at probe inlet.

D~ diameter of sampling probe inlet .

C — aerosol concentration of sample (mass/volume) .

ii: 11±1 11 ________
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C =  aerosol concentration of free stream (mass/volume) .

Subisokinetic sampling errors predicted from Eq. (2) are in good

agreement with results reported by Davies5, Belyaev and Levin6, and

Zenker as reported by Fuchs7 (Figure 1). Even though these investi-

gators
5 7  

used particles greater than 4 ~im diameter, large bore probes
and low speed flows, their studies included Stokes numbers near 0.1.
For example, Zenker

7 
sampled vertical air streams containing spherical

glass beads or limestone dust with particle diameters from 7 to 73

micrometers. For Stokes numbers between 0.06 and 14 and values of U/U

between 0.4 and 2.5, Zenker
7 
provides the following relationship:

C/C0 = N + (U /U) (1-N) (3)

where:

N = dimensionless coefficient depending only on the

Stokes number

For Stokes numbers less than 0.5 a least squares fit (N vs K
s
’) to

Zenker ’s
7 
smoothed data gives:

N = 1.02 — 0.85 (K)~ (4)

r2 = coefficient of determination = 0.99

The good agreement between Eqs . (2 ) and (3) demonstrates the use-
fulness of both expressions for predicting sonic range subisokinetic
sampling errors. Since Eq (3) was experimentally verified over a wider

range of Stokes numbers, it will be used in the following calculations

to estimate subisokinetic errors associated with gas turbine engine
smoke probe operation.

4
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SECTION III

CALCULATION OF ANISOKINETIC ERRORS

To apply the Zenker equation (Eq (3)) the first step is to calcu-

late appropriate particle—nozzle Stokes numbers. This requires a knowl-

edge of engine exhaust temperature and velocity as well as information

about the exit plane particle size distribution. For illustrative

purposes, consider the JT9D turbofan engine which powers the Boeing 747

aircraft. According to the LAAPCD
8
, at the take—off power setting the

.JT9D has an exhaust temperature of approximately 480°C and an exhaust
velocity (U) near 400 m/s (Mach 0.74). Although the size distribution

of particles in a gas turbine engine exhaust is not known with much
certainty, the result of the often cited work of Stockham and Betz9 will

be used . Stockhaut and Betz9 found particles at the exhaust plane of a

J57 engine operating at 75% normal power to have a number median diameter

(N ) of 0.053 ..m and a geometrical standard deviation (a ) of 1.63. Theg g
number median diameter (N ) can be converted to the mass median diameter

10 g
(M
g) using

lnM = ln N + 3(ln~~~)
’ (5)g g g

For our example Mg equals 0.108

If we now divide the particle mass distribution into size intervals

which represent 10% of the particle mass, we can calculate Stokes numbers

and use Eq. (4) to determine N values for the mid-point particle diameter

in each interval; Table 1 summarizes this procedure. In the particle—

nozzle Stokes number calculation a gas viscosity UIg
) of 358.3 ~i Poise,

a probe inlet diameter CD ) of 2.0 mm , and a particle density (p ) of
3 p 9

1.0 gm/cm were used.

With the computed N values (Table 1), Eq. (3) can be used to estimate

average relative percent sampling errors C (C-C )/C x 100 )for sub-

S

_ _ _ _  -_ _ _ _ _ - _ _ - _ -_ --~
_ _ _— - - _ ---~~_
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isokinetic operation (U/U <l) of an AR? 1179 smoke probe. Table 2

lists the computed values of C/C for the mid-point particle diameter of
each 10% mass interval. In addition, Table 2 contains arithmetic average
values of C/C for selected sampling velocity ratios (U/U ) ranging from
0.1 to 0.7. When U/U is greater than 0.7 the sampling error is negli-
gible. Figure 2 shows the averaged C/c and selected U/U values plotted
as relative % error versus the % of the isokinetic condition. As shown
in Figure 2 , operation of an AR? 1179 smoke probe would produce an
estimated 15-30% subisokinetic error at the assumed exhaust conditions .

6

--



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -—--

~~

- -

~~~

SECTION IV

DISCUSSION

Under aircraft turbine engine smoke testing procedures as specified

in SAE ARP 11792 the predicted subisokinet_c sampling errors are not

serious, since it has been shown by Champagne11 that smoke filters which

differ in collected particle mass by 50% can yield the same SAE smoke

number. Thus, a smoke sample obtained isokinetically and a smoke sample

obtained with U/U0 as low as 0.13 could produce identical smoke numbers.
This can occur because smoke number is primarily influenced by the

reflectivity of smaller particles on the filter paper. Larger particles

will have little effect on the reading obtained, irrespective of their

mass quantity. It must also be remembered that the error calculation

was performed for a take—off engine power setting and therefore, must be

considered a worst case analysis for a non—afterburning aircraft gas

turbine engine.

The results are of special interest to those concerned with measur-

ing the true smoke density (mass of particles/volume) of gas turbine

engine exhausts. For this determination, especially at the take-off

engine power setting, it is evident that subisokinetic sampling errors
need to be considered. To insure representativeness, samplers should

operate isokinetically or have a selection of sampling rates to maintain

a sufficient U/U for all engine power settings.

7 
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SECTION V

SUM1~~RY

The recent aerosol sampling data reported by Mar tone et a14 has

been used to establish the validity of extending Zenker’s
7 
results to

predict subisokinetic sampling errors in compressible flows. The

prediction technique was applied to sampling gas turbine engine exhausts

using an ARP 1179 smoke probe. The analysis shows that a smoke probe

may produce a 15 to 30% subisokinetic sampling error at a take—off

engine power setting. These errors do not greatly affect smoke number

determinations but should be considered when true smoke density is

measured.
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